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Optical metal-to-ligand charge transfer in
tris(pyrazine-2-carboxylato)cerium(III)

Absorption and emission
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Abstract

The complex CeIII (pyz-COO)3, with pyz-COO= pyrazine-2-carboxylate, is characterized by a long-wavelength absorption atλmax =
388 nm which is assigned to a (CeIII → pyz-COO−) metal-to-ligand charge transfer (MLCT) transition. The blue-green luminescence of
the complex atλmax = 470 nm is assumed to originate from this MLCT state.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Metal-to-ligand charge transfer (MLCT) excited states
play a very important role in the photophysics and pho-
tochemistry of metal complexes[1,2]. MLCT states occur
at low energies if a ligand with empty low-energy orbitals
is coordinated to an electron-rich metal center. The over-
whelming number of observations have been made on d→
�∗ MLCT states of polypyridyl (or 1,2-diimine) complexes
with electron-donating transition metals such as Ru(II)[3,4],
Re(I) [4–7] and Cu(I)[4,8,9]. However, the occurrence of
MLCT states is not restricted to transition metals. MLCT
bands have also been observed in the electronic spectra of
complexes that contain reducing main group metals, includ-
ing Sn(II), Sb(III) and Bi(III) [10]. In contrast to these tran-
sition and main group metal compounds, MLCT states of
f-group metal complexes have apparently not yet been iden-
tified. The reason for this lack is not quite clear, but may be
related to the fact that complexes of lanthanides (Ln) or ac-
tinides are only of limited stability. This applies, in particu-
lar, to complexes with neutral ligands such as 2,2′-bipyridine
(bipy) or 9,10-phenanthroline. While such lanthanide com-
plexes are known[11,12], the affinity of Ln3+ for these lig-
ands seems to be rather small. The electronic spectra provide
evidence for this notion. Generally, the longest-wavelength
band of the bipy ligand undergoes a distinct red shift upon
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complex formation[13,14]. However, in the case of Ce(III)
bipy complexes, such a shift has not been observed[15], in-
dicating a rather weak electronic interaction between cerium
and bipy. On the other hand, anionic ligands form rela-
tively stable complexes with Ln3+, owing to the electro-
static attraction between metal cations and ligand anions.
Accordingly, a complex consisting of a reducing f-group
metal cation and an electron-accepting anionic ligand should
be a promising candidate for the observation of an opti-
cal MLCT transition. We explored this possibility and se-
lected the compound CeIII (pyz-COO)3 with pyz-COO− =
pyrazine-2-carboxylate for the present study.

This choice was based on the following considera-
tions. Ce(III) is a one-electron donor of moderate reducing
strength. The electronic spectra of Ce(III) complexes have
been studied in some detail. They are characterized by a
long-wavelength, metal-centered f→ d absorption[16,17].
Pyrazine has been shown to be a rather strong acceptor for
MLCT transitions [18]. As an electron-withdrawing sub-
stituent, the carboxylate group of pyz-COO− should even
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enhance the acceptor strength of pyrazine. Finally, the an-
ion pyz-COO− is a well-known bidentate ligand[19,20].
Accordingly, the target complex CeIII (pyz-COO)3 was ex-
pected to be accessible by a simple synthetic procedure.

2. Experimental

2.1. Materials

All solvents used for spectroscopic measurements were of
spectrograde quality. The pyz-COOH and CeCl3·7H2O were
commercially available (Aldrich) and used without further
purification.

CeIII (pyz-COO)3·1.5 H2O was obtained by the following
procedure: To a suspension of pyz-COOH (3.72 g, 30 mmol)
in 50 ml methanol (95%) was added dropwise under stirring
2.7 ml aqueous ammonia (25%). The reaction mixture be-
came neutral and a clear colorless solution was obtained. A

Fig. 1. Electronic absorption (a) and emission (e) spectrum of 1.30 × 10−4 M pyz-COOH in CH3CN at room temperature, 1 cm cell. Emission:
λexc = 320 nm, intensity in arbitrary units.

Fig. 2. Electronic absorption (a) and emission (e) spectrum of 1.31× 10−3 M CeIII (pyz-COO)3·1.5H2O in CH3CN/DMF = 100/1 at room temperature.
Absorption: 1 cm cell (- - -) and 0.01 cm cell (—). Emission:λexc = 360 nm, intensity in arbitrary units.

colorless solution of CeCl3·7H2O (3.72 g, 10 mmol) in 35 ml
methanol was added, yielding a bright yellow solution. After
stirring for ∼30 min, a yellow powder slowly precipitated.
It was collected by filtration, washed four times with 50 ml
methanol (90%), then with warm methanol and ether, and
dried under reduced pressure, yielding the analytically pure
product, 4.0 g (78%).

Anal. calcd. for C15H9N6O6Ce·1.5H2O (536.41): C,
33.59%; H, 2.20%; N, 15.66%. Found: C, 33.55%; H,
2.28%; N, 15.59%.

2.2. Instrumentation

Absorption spectra were measured with a Hewlett-Packard
8452A diode array or an Uvikon 860 absorption spec-
trometer. The light source used was an Osram HBO
200 W/2 or an Osram XBO 450 W/4 lamp. Additional cut-
off filters (Schott) were applied to avoid short-wavelength
and second-order photolysis. Monochromatic light was
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obtained using a Schoeffel GM/1 high-intensity monochro-
mator (band width 23 nm). In all cases, the light beam was
focused on a thermostated photolysis cell by a quartz lens.
Emission and excitation spectra were recorded on a Hitachi
850 spectrofluorometer equipped with a Hamamatsu 928
photomultiplier for measurements up to 900 nm. The lumi-
nescence spectra were corrected for monochromator and
photomultiplier efficiency variations.

3. Results

The electronic spectrum of the free acid pyz-COOH in
CH3CN (Fig. 1) shows absorptions atλmax = 320 (ε =
480 M−1 cm−1), 268 (6900) and 211 (6300) nm. The spec-
trum of the anion pyz-COO− is practically the same as that
of the acid. The free acid as well as the anion pyz-COO−
display a weak fluorescence (Fig. 1) at λmax = 395 nm.

Since CeIII (pyz-COO)3 is almost insoluble in pure
CH3CN, it was dissolved in DMF which was then diluted
with CH3CN. The absorption spectrum of CeIII (pyz-COO)3
in CH3CN/DMF = 100/1 (Fig. 2) exhibits bands atλmax =
388 nm (sh, 130), 318 (sh, 1500), and 271 (12200) nm. The
388 nm band causes the yellow color of the compound.
CeIII (pyz-COO)3 shows a weak blue-green luminescence
(Fig. 2) at λmax = 470 nm. This luminescence is not af-
fected by oxygen. The excitation spectrum matches roughly
the absorption spectrum.

4. Discussion

Cerium(III) as an f1 ion contains a single electron in its va-
lence shell. The lowest-energy electronic transition of Ce3+
involves the promotion of this electron from the 4f to the 5d
orbitals [16,17]. Generally, simple Ce(III) compounds are
colorless since this metal-centered f→ d transition gives
rise to an absorption in the near UV region.

The free acid pyz-COOH or its deprotonated anion
pyz-COO− are also colorless, because their absorptions
(Fig. 1) appear below 400 nm. Upon coordination, these
intraligand (IL) bands remain in the UV region, as indi-
cated by the observation that ZnII (pyz-COO)2 is a white
compound which does not show any absorption in the
visible region [20]. In distinction to this zinc complex,
CeIII (pyz-COO)3 is a yellow substance. This color is caused
by the longest-wavelength absorption of the complex at
λmax = 388 nm, which extends into the visible spectral
region. We suggest that this band belongs to an MLCT tran-
sition from the Ce(III) 4f orbitals to the�∗ orbitals of the
pyz-COO− ligand. This assignment is consistent with the re-
ducing character of Ce(III) and electron-accepting nature of
the pyz-COO− ligand. In this context, it is of interest that an
iron(II) complex of pyz-COO− is a dark-violet material. It
shows a characteristic absorption atλmax = 470 nm, which
has been tentatively assigned to an MLCT transition[20].

Simple Ce(III) complexes are frequently luminescent
[16,17]. Generally, this emission appears in the near UV
and undergoes only a slight red shift when compared with
the longest-wavelength absorption. The emissive state is
a metal-centered df excited state[16,17]. The lumines-
cence is a spin-allowed doublet–doublet transition which
takes place in the ns range. We suggest that in contrast to
this UV emission, the weak blue-green luminescence of
CeIII (pyz-COO)3 originates from the lowest-energy CeIII →
pyz-COO− MLCT excited state which is also observed
as the longest-wavelength absorption. Owing to the f1

electron configuration, absorption and emission are both
spin-allowed processes. The small Stokes shift of�E =
4497 cm−1 reflects the fact that the f-electron that takes part
in the MLCT transition is hardly involved in any bonding
interaction.

In summary, the complex CeIII (pyz-COO)3 seems to be
the first example of an f-group metal complex with an MLCT
excited state. This MLCT state occurs at rather low energies
and is observed in absorption and emission.
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